ONCOTROPISM OF VIRUSES AND THE PROBLEM OF VIROTHERAPY OF MALIGNANT TUMORS

Summary

Numerous experiments on tumors of various origin and histological structure prove that viruses belonging to different groups are tropic to tumor cells.

Oncotropism of viruses has nothing in common with the malignancy of the cell. In relation between viruses and tumor tissues the same particularities have been observed which have been stated in relations between viruses and different tissues in general. A virus may reproduce in a tumor, may be found in a tumor cell in a latent state, hold on with the tumor, and cause the development of interferon; it may as well cause the destruction of tumor cells, the so-called oncolysis. The latter phenomenon has attracted the attention of many scientists, who hoped to avail themselves of it in their attempts to abolish malignant tumors.

Recently some scientists have dedicated themselves to the study of other properties of oncotropic viruses, for instance, the property of viruses to induce new antigens. Mixoviruses, when reproducing in tumor cells, may acquire tumor-specific antigens. In cancer hospital viruses have been applied in the treatment of advanced cancer. Almost all of the applied viruses affected the tumor process to a certain extent: they caused transitory break in the growth of the tumor, a transient regress of the tumor or metastases, destruction of the tumor, more or less durable remissions in leucosis. Often a subjective improvement of the condition of the patients has been observed. Consequently, the virus infection can influence a tumor process. That is why a search for viruses available for virotherapeutics of malignant processes in man and a study of their effect on tumors is most important.

Virus treatment implies viruses classified as follows:
1) oncolytic, i.e. those reproducing in tumor cells and causing their destruction;
2) transforming viruses — those causing transformation of the antigens of tumor cells;
3) viruses acquiring tumor-specific antigens in the process of reproduction;
4) viruses stimulating the mechanisms of immunity acting on the tumor either non-specifically or specifically;
5) viruses — inductors of interferon which could be applied in cases of tumors and leucosis of virus origin.

Of course, in search of all the mentioned viruses special methods must be applied, considering the properties of viruses to the purpose of the experiment.

In the laboratory for cancer virotherapy of the A. Kirchenstein Institute of Microbiology of the Academy of Sciences of the Latvian SSR, it has been stated that human enteroviruses manifested tropism and oncolytic activity in heterotransplanted human angiosarcoma. Furthermore, it has been stated that different human tumors may adsorb enteroviruses, but the spectrum of the adsorbed viruses depends on the type of virus as well as on the individual properties of a certain tumor. The adsorbed viruses often synthesize virus antigens in the tumor cells of the long-termed tissue culture.

The antigen of enteroviruses has been detected after intramuscular introduction in excised tumors in 52% of cases. The cellular response to enterovirus infection is the following: coarsening of the chromatin and decrease of nuclear size; vacuolization of cytoplasm with the following disintegration of the cell. Thus, the human enteroviruses can affect the tumors oncolytically, but the oncolysis may be immediately interrupted by a simultaneously intensified antiviral immunity. The influence of enteroviruses on human tumor may be rather complicated, as well effecting various immunologic phenomena.

Experimental treatment of rat reticulosarcoma-321 with alkylating agents (sarkolysin) combined with enteroviruses (Coxsackie B-5) resulted in absence of relapse of tumor growth. Sarkolysin has been applied in subtherapeutical dose. The regression of tumors in this case is accompanied by intense proliferation of plasma cells in regional lymphatic nodes.

Now it has been stated that oncolytic viruses as well as immunogenic ones cannot be applied as an independent means of treatment of malignant processes; virotherapeutics should be introduced as a most expedient treatment of malignancy. The application of viruses should be combined with surgical treatment — a radical removal of the tumor or a palliavtive surgical operation could be recommended here. Vitrotherapeutics may be supplemented with chemotherapeutics. Yet chemical preparations should be applied in doses which do not induce suppression of immunity of the organism. A theoretical basis seems to become imminent for the application of oncotropic viruses in the treatment of malignant processes.

The problem of treatment by means of viruses may be solved through development of the following items:
I. Selection of viruses acting on human tumor processes.
 2. Studies of relations between oncotropic viruses and various human tumors in vitro and in vivo with the aim of selecting viruses with oncolytic and transformation trends:
 a) determination of the types of viruses in tumors, the cycle of their development etc.;
 b) studies of reactivity of tumor cells on virus infection;
 c) determination of viral and tumoral spectra.
 3. Selection and study of mutual interference among the slightly pathogenic oncolytic viruses and the elaboration of tactics in mastering immune reactivity of the organism.
 4. Elaboration of methods for the determination of individual sensibility of human tumors to the selected viruses.
 5. Selection of virus stimulating the immune mechanisms of the organism as well as antitumor immunity.
 6. Technology of virus preparations.

II. Methods of virus application for immunologic treatment of malignancy.
 1. Studies of the possibility of applying viruses for strengthening antigenity of tumor cells in vitro and in vivo.
 2. The expediency of applying viruses as immune stimulators of antitumor immunity in the course of a complex cancer treatment.
 3. Tracing of viruses which in the process of reproduction in human tumor cells acquire antigenity of the cells.

III. Methods of applying viruses in cancer hospitals.
 1. Deliberations about clinical harmlessness and epidemiological security of selected viruses.
 2. Studies of antiviral, antitumoral and general immunity of the organism against the selected oncolytic and transforming viruses and the complex virus-tumor cell.
 3. Statement of the dose, site, optimal intervals and successiveness of introducing viruses (also autovaccines) regarding their activity on the tumor process.
 4. Ascertainment of the site for virotherapeutics in a complex treatment of a malignant process.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Part 1. ONCOTROPISM OF VIRUSES AS A PROBLEM OF VIRUSOLOGY AND ONCOLOGY</td>
<td>14</td>
</tr>
<tr>
<td>Chapter 1. DISCOVERY OF ONCOTROPIC AND ONCOLYTIC PROPERTIES OF VIRUSES IN DIFFERENT TUMORS OF LABORATORY ANIMALS</td>
<td>15</td>
</tr>
<tr>
<td>Oncotropic and oncolytic properties of different groups of viruses determined by the type of a tumor</td>
<td>15</td>
</tr>
<tr>
<td>Tumor spectrum of viruses and virus spectrum of tumors</td>
<td>60</td>
</tr>
<tr>
<td>Chapter 2. VARIETY OF RELATIONS IN THE SYSTEM VIRUS — TUMOR.</td>
<td>69</td>
</tr>
<tr>
<td>Formation of infectious types of viruses in a tumor</td>
<td>69</td>
</tr>
<tr>
<td>Incomplete virus synthesis in tumor cells</td>
<td>75</td>
</tr>
<tr>
<td>Restriction of tumor growth without discovery of a virus</td>
<td>78</td>
</tr>
<tr>
<td>Propagation of viruses in a tumor-bearing organism</td>
<td>87</td>
</tr>
<tr>
<td>Chapter 3. ROLE OF SOME FACTORS IN THE MANIFESTATION OF VIRUS ONCOLYSIS</td>
<td>90</td>
</tr>
<tr>
<td>Chapter 4. RECIPROCITY BETWEEN ONCOLYTIC AND SOME OTHER PROPERTIES OF VIRUSES</td>
<td>96</td>
</tr>
<tr>
<td>Chapter 5. VIRUSES-PASSENGERS</td>
<td>99</td>
</tr>
<tr>
<td>Viruses-passengers in tumors of laboratory animals</td>
<td>101</td>
</tr>
<tr>
<td>Viruses-passengers in tumors of man</td>
<td>112</td>
</tr>
<tr>
<td>Chapter 6. OCCURRENCE OF IMMUNITY IN RECIPROCAL ACTIVITY OF VIRUS AND TUMOR</td>
<td>127</td>
</tr>
<tr>
<td>Influence of antiviral immunity on oncolytic activity of viruses</td>
<td>127</td>
</tr>
<tr>
<td>Antigenity of a cell in the case of virus infection</td>
<td>132</td>
</tr>
<tr>
<td>Development of anticancer immunity following virus oncolysis</td>
<td>139</td>
</tr>
<tr>
<td>Formation of interferon by malignant cells and the significance of this phenomenon in virus oncolysis</td>
<td>147</td>
</tr>
<tr>
<td>Chapter 7. TO THE QUESTION OF STIMULATING THE GROWTH OF TUMOR BY VIRUS INFECTION AND ONCOTROPIC VIRUSES</td>
<td>157</td>
</tr>
</tbody>
</table>
Chapter 8. MORPHOLOGIC MANIFESTATION OF TUMOR REGRESSION IN VIRUS ONCOLYSIS 163
Chapter 9. POSSIBLE MECHANISMS OF VIRUS ONCOLYSIS 179
Chapter 10. ADAPTATION OF ONCOTROPIC VIRUSES TO TUMORS AND CONSEQUENT MUTABILITY OF VIRUSES 185

Part II. PROBLEM OF CANCER VIROTHERAPY 202

Chapter 11. TROPISM OF VIRUSES ON HUMAN TUMOR CELLS IN VITRO 203
Chapter 12. ONCOTROPIC AND ONCOLYTIC PROPERTIES OF VIRUSES IN RELATION TO HETEROTRANSPLANTS OF HUMAN TUMORS 207
Chapter 13. MANIFESTATION OF ONCOTROPIC AND ONCOLYTIC PROPERTIES OF VIRUSES IN THE ORGANISM OF A CANCER PATIENT 225

Effect of virus infection on the course of a malignant process (empirc observations) 225
Clinical experience in virotherapy of cancer 228

Chapter 14. PROBLEMS CONNECTED WITH THE SELECTION OF VIRUSES ONCOLYTIC FOR HUMAN TUMORS 266
Chapter 15. SOME QUESTIONS ARISING WHEN VERIFYING CLINICALLY EXPERIMENTALLY STATED OBJECTIVE LAWS OF VIRUS ONCOLYSIS 270

Part III. ONCOTROPIC AND ONCOLYTIC PROPERTIES OF ENTEROVIRUSES 280

Chapter 16. BRIEF DESCRIPTION OF ENTEROVIRUSES AND HISTORY OF THEIR ONCOTROPIC AND ONCOLYTIC PROPERTIES 281
Chapter 17. MATERIALS AND METHODS 292
Chapter 18. STUDIES OF ONCOTROPIC PROPERTIES OF ENTEROVIRUSES ON HETEROTRANSPLANTS 299
Chapter 19. STATEMENT OF ONCOLYTIC ACTIVITY OF ENTEROVIRUSES ON HETEROTRANSPLANT OF HUMAN ANGIOSARCOMA 304
Chapter 20. INFLUENCE OF VARIOUS FACTORS ON ONCOTROPIC AND ONCOLYTIC PROPERTIES OF ENTEROVIRUSES 330

Comparison of oncotropic and oncolytic properties of pathogenic and slightly pathogenic enteroviruses 330
Influence of a virus dose on oncolytic activity 331
Activity of alkylating agents on the behaviour of enteroviruses in tumor 333
Influence of mixed infection on oncotropic and oncolytic properties of enteroviruses 336
Chapter 21. MODIFICATION OF SOME PROPERTIES OF ENTEROVIRUSES DURING THEIR PROLONGED PASSAGES THROUGH HETEROTRANSPLANT OF HUMAN ANGIOSARCOMA 339

Chapter 22. INFLUENCE OF ENTEROVIRUSES ON THE GROWTH OF INSENSIBLE TUMORS OF LABORATORY ANIMALS 350
- Activity of enteroviruses ECHO-7 and Coxsackie B-5 on the growth of inoculated rat sarcomas 350
- Influence of RNA of enterovirus ECHO-7 on the growth of rat sarcoma M-1 354
- Influence of inapparent enterovirus infection on antiblastic effect of alkylating antitumor agents 356

Chapter 23. ADSORPTION OF ENTEROVIRUSES ON VARIOUS HUMAN TUMORS 363
- Statement of conditions for adsorption of enteroviruses 364
- Adsorption of enteroviruses on tumors of laboratory animals 366
- Adsorption of enteroviruses on human tumor tissues 367

Chapter 24. PRESENCE OF ENTEROVIRUS ANTIGEN IN CELLS OF VARIOUS HUMAN TUMORS 383

Conclusion 392

Literature 404

Nominal list 427

Summary 435